A few key ideas from RF1 & RF2 town-hall

Summarized by Marina Artuso

RF1- topical group conveners Angelo Di Canto and Stefan Meinel

RF2- topical group conveners Emilie Passemar and Evgueni Goudzovski

For more information

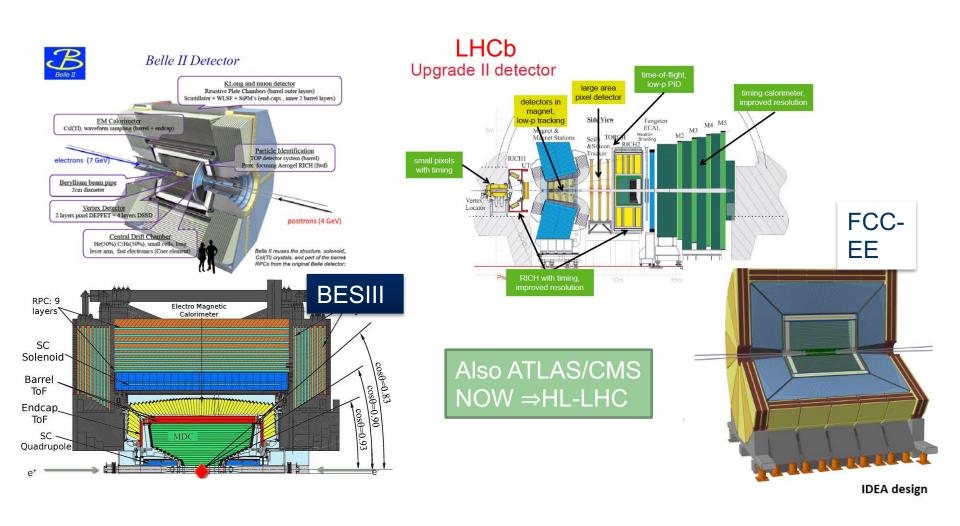
https://snowmass21.org/rare/start

https://snowmass21.org/rare/weakbc

https://snowmass21.org/rare/weaksud

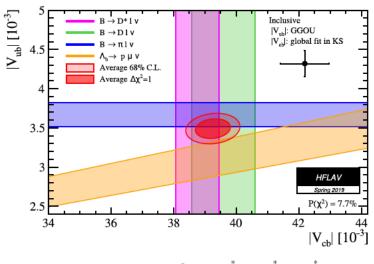
Including calendar of events

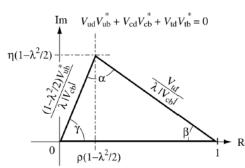
The big picture

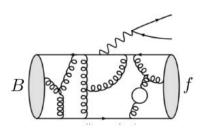

"there is a crack in everything Leven SM1 That's how the light gets in"

[Leonard Cohen]

We are investigating:

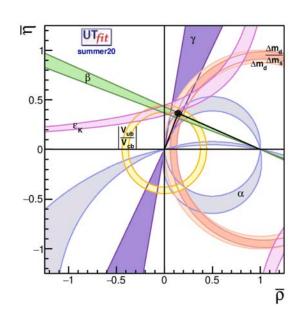

- ☐ The crack through precision tests of the SM
- ☐ The crack through rare processes

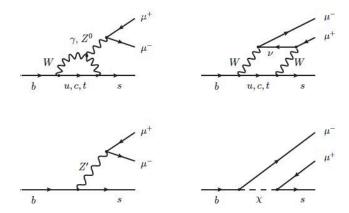

RF1-Experimental approach to heavy-quark studies



RF1- heavy quarks -Challenges to the SM

Tension between different determinations of CKM parameters

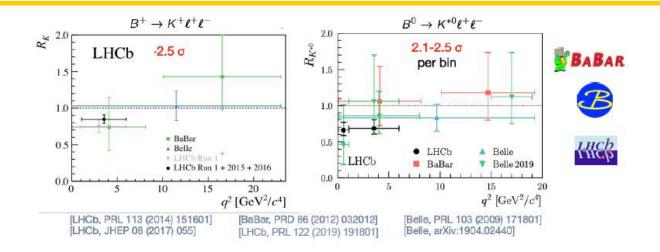



→ Non-perturbative QCD, i.e. difficult to compute

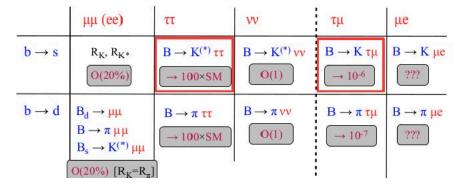
(Lattice QCD, QCD factorisation, Light-cone sum rules...)

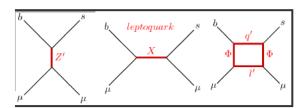
RF1- heavy quarks Indirect evidence for new physics

$$b \rightarrow s\ell^+\ell^-$$



Differential distributions

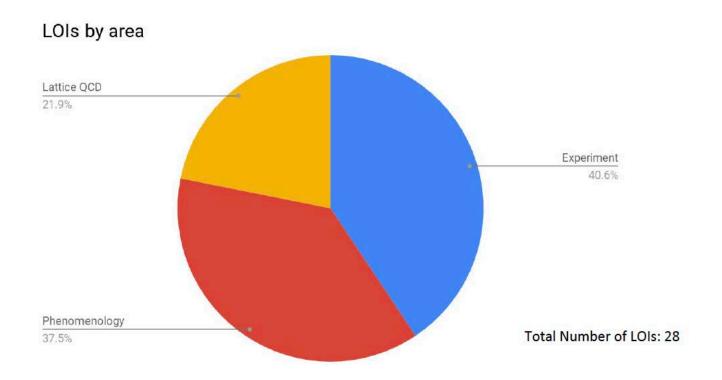

| SM from DHMV | SM from ASZB | GeV²/c⁴| | SM from ASZB | GeV²/c²| | SM from ASZB | GeV²/c²| | GeV²/c²| | SM from ASZB | G


EFT analysis

RF1 – LVU violation?

G.Isidori, FPCP 2020: correlations among b→s(d)ll' within the U(2)-based EFT

Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers

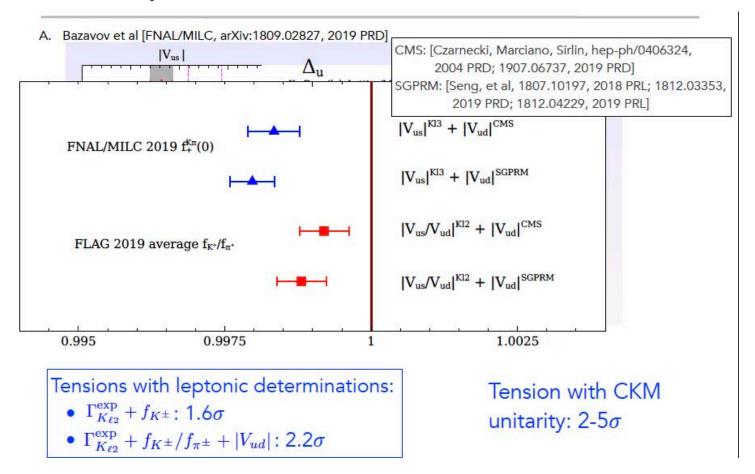

Lot of those models predict also LFV b→seμ, b→seτ,...

Theory connection

□ Lattice QCD provides accurate calculations of several matrix elements needed to relate the hadron decays studied with the fundamental quantities sought for. [see also parallel session 124]

- ☐ Theoretical analyses of "anomalies" in model independent EFT fits investigates the general properties of the new physics. [hot topic in this TG and more broadly, see also parallel sessions 41,125]
- □ Phenomenological models weaving unexpected observations together (e.g. R-parity SUSY, leptoquark, Z' ..) [see also parallel session 126]

Summary of LOIs

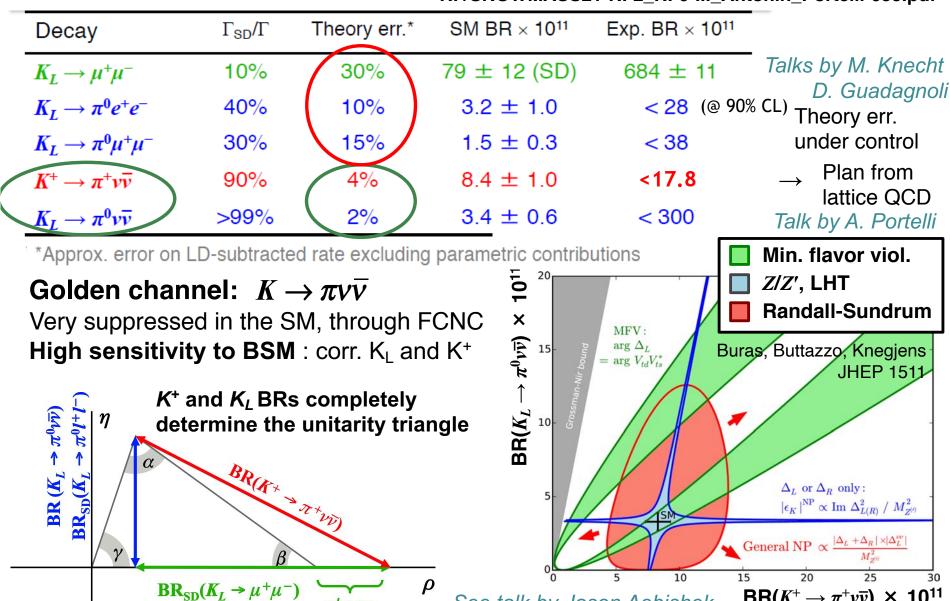


- Research in heavy flavors is an essential component of the current and future particle physics program
- Importance of anomalies
- Important role of the lattice QCD in this physics program

RF2 (1) - Precision SM test in K decays

Vus from $K \to \pi \ell \nu$ and inference from unitarity of CKM

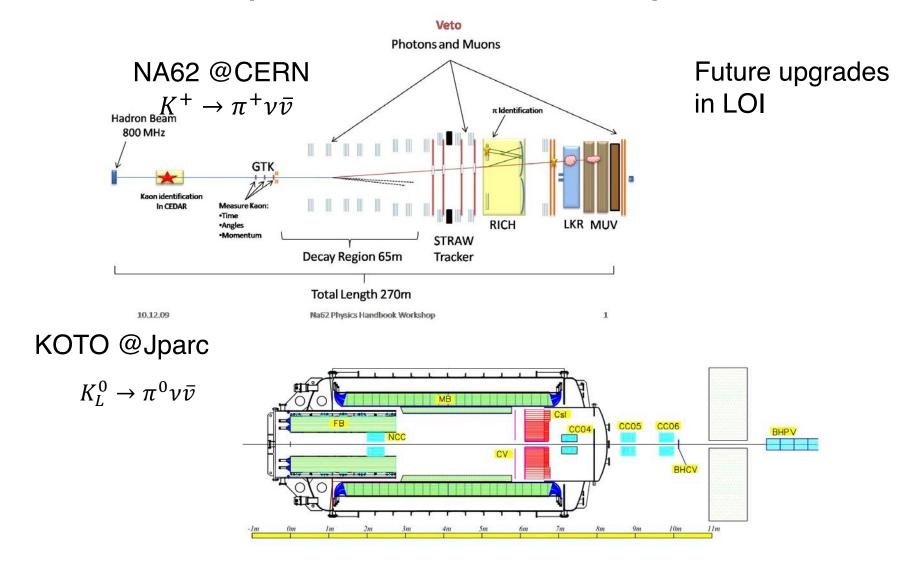
Aida El-Kadra



Rare καον decays

Situation before ICHEP 2020

RF/SNOWMASS21-RF2 RF0-012.pdf RF/SNOWMASS21-RF2_RF0-124/125.pdf RF/SNOWMASS21-RF2 RF1-058.pdf RF/SNOWMASS21-RF2 RF0-... Norman Christ-066.pdf RF/SNOWMASS21-RF2_RF0-..._Antonin_Portelli-055.pdf


 $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu}) \times 10^{11}$

charm

See talk by Jason Aebishek

Experimental landscape

Rare K decay program at LHCb

LHCb experiment:

RF/SNOWMASS21-RF2_RF0_Diego_Martinez_Santos-053.pdf

See talk by Francesco Dettori

LHCb expanding its physics reach towards strange physics complementary to the core program

R = ratio of

production

- Encouraging Run 1-2 results on $K_S^0 o \mu^+ \mu^-$ and $\Sigma^+ o p \mu^+ \mu^-$
- Large samples available on tape
- Run 2 giving new results with improved trigger
- Upgrade trigger
 unprecedented sensitivities
 on many channels
- Complementary to K_L and K⁺ dedicated experiments

LHCb major player for K_S and hyperons rare decays

	Sensi	itivity	Studies	ArXiv:18	808.034	77
	Channel	${\cal R}$	ϵ_L	ϵ_D	$\sigma_L({ m MeV}/c^2)$	$\sigma_D({ m MeV}/c^2)$
-	$K_{\rm S}^0 \to \mu^+ \mu^-$	1	1.0 (1.0)	1.8 (1.8)	~ 3.0	~ 8.0
	$K_{\rm S}^0 \to \pi^+\pi^-$	1	$1.1\ (0.30)$	1.9(0.91)	~ 2.5	~ 7.0
	$K_{\rm S}^0 \to \pi^0 \mu^+ \mu^-$	1	0.93 (0.93)	1.5 (1.5)	~ 35	~ 45
9	$K_{\rm S}^0 \to \gamma \mu^+ \mu^-$	1	0.85 (0.85)	1.4(1.4)	~ 60	~ 60
	$K_{\rm S}^0 \to \mu^+ \mu^- \mu^+ \mu^-$	1	0.37(0.37)	1.1(1.1)	~ 1.0	~ 6.0
	$K_{\rm L}^0 o \mu^+ \mu^-$	~ 1	$2.7 (2.7) \times 10^{-3}$	$0.014 \ (0.014)$	~ 3.0	~ 7.0
	$K^+ \to \pi^+ \pi^+ \pi^-$	~ 2	$9.0 (0.75) \times 10^{-3}$	$41 (8.6) \times 10^{-3}$	~ 1.0	~ 4.0
	$K^+ \to \pi^+ \mu^+ \mu^-$	~ 2	$6.3 (2.3) \times 10^{-3}$	$0.030 \ (0.014)$	~ 1.5	~ 4.5
	$\Sigma^+ \to p \mu^+ \mu^-$	~ 0.13	$0.28 \ (0.28)$	$0.64 \ (0.64)$	~ 1.0	~ 3.0
	$\Lambda \to p\pi^-$	~ 0.45	$0.41 \ (0.075)$	1.3(0.39)	~ 1.5	~ 5.0
	$\Lambda \to K_S^0 \to \mu^+\mu^-$	~ 0.45	0.32(0.31)	$0.88 \; (0.86)$	_	_
	\Box - μ	~ 0.04	$39 (5.7) \times 10^{-3}$	0.27 (0.09)	_	_
	$\Xi^- o \Sigma^0 \mu^- \bar{\nu_\mu}$	~ 0.03	$24 (4.9) \times 10^{-3}$	$0.21\ (0.068)$	_	_
	$\Xi^- \to p\pi^-\pi^-$	~ 0.03	0.41(0.05)	0.94 (0.20)	~ 3.0	~ 9.0
	$\Xi^0 \to p\pi^-$	~ 0.03	1.0 (0.48)	2.0(1.3)	~ 5.0	~ 10
	$\Omega^- \to \Lambda \pi^-$	~ 0.001	$95 (6.7) \times 10^{-3}$	0.32(0.10)	~ 7.0	~ 20
	Channel	${\cal R}$	ϵ_L	ϵ_D	$\sigma_L({ m MeV}/c^2)$	$\sigma_D({ m MeV}/c^2)$
_	$K_{\rm S}^0 \to \pi^+ \pi^- e^+ e^-$	1	1.0 (0.18)	2.83 (1.1)	~ 2.0	~ 10
	$K_{\rm S}^0 \to \mu^+ \mu^- e^+ e^-$	1	1.18 (0.48)	2.93(1.4)	~ 2.0	~ 11
	$K^+ \to \pi^+ e^- e^+$	~ 2	0.04 (0.01)	0.17 (0.06)	~ 3.0	~ 13
	$\Sigma^+ \to pe^+e^-$	~ 0.13	$1.76 \ (0.56)$	3.2 (1.3)	~ 3.5	~ 11
	$\Lambda \to p\pi^- e^+ e^-$	~ 0.45	$< 2.2 \times 10^{-4} \sim 1$	$17 \ (< 2.2) \times 10^{-4}$	_	_
	Channel	$\mathcal R$	ϵ_L	ϵ_D $\sigma_L(\mathrm{M}\epsilon)$	eV/c^2) $\sigma_D(Me^2)$	eV/c^2)
_	$K_S^0 \to \mu^+ e^-$		0 (0.84) 1.5	$\sim (1.3)$ ~ 3	~ 8.0	8.0
	$K_L^0 \to \mu^+ e^-$ $K^+ \to \pi^+ \mu^+ e^-$		$2.6) \times 10^{-3}$ 13 (1)	1) $\times 10^{-3}$ ~ 3 $.5) \times 10^{-3}$ ~ 3	A	Universi

 $\epsilon = \text{ratio of}$

efficiencies

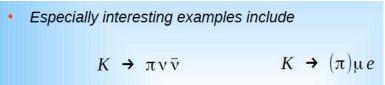
Next Generation experiments:

- Required to make a precision measurement $K^+ \to \pi^+ \nu \overline{\nu}$ and to make a significant observation of $K_{_I} \to \pi^0 \nu \overline{\nu}$
 - Would become a very high priority if hints of new physics from NA62 or KOTO
 - In absence of hints, more precise measurements potential discovery
- High intensity K+ and K_L beams at SPS, CERN: RF/SNOWMASS21-RF2_RF0-010.pdf
 3 phases with same primary beamline and interchangeable detectors
 - 1. "NA62x4": $K^+ \to \pi^+ \nu \nu$

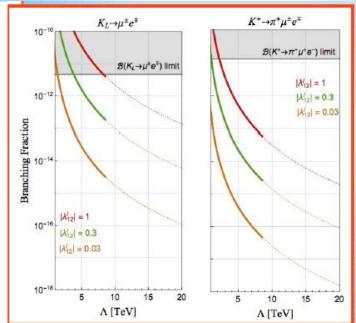
See talk by Matthew Moulson

- 2. KLEVER: $K_L \rightarrow \pi^0 \nu \nu$
- 3. Intermediate stage: K_L beam + charged-particle tracking/PID: $K_L \to \pi^0 \lambda^+ \lambda^-$; LFV and radiative K_L decays

KOTO Step-2


RF/SNOWMASS21-RF2_RF0_Y.W.Wah-065.pdf

- construction around 2025 and ~100 events at SM level with S/N~1 (3y data).
- Two major upgrades 2:
 - Higher kaon flux: reduce targeting angle from 16 degrees to 5 degrees, increase target length from 60 mm to 102 mm
 - Increase detector acceptance: increase calorimeter radius from 2 m to 3 m, increase fiducial region from 2 m to ~15 m


See talk by Elizabeth Worcester

Remarks

- ☐ Synergy with SM tests of in beauty and charm decays (the K triangle)
- □ Complementary LF violation measurements

Diego Guadagnoli at https://indico.fnal.gov/event/45713/

Very rich physics program at η and η ' factories

See talks by Sergi-Gonzalez Solis and Sean Tulin in RF6

RF/SNOWMASS21-RF6_RF2_Sean_Tulin-117.pdf

RF/SNOWMASS21-RF2_RF0_Sergi-085.pdf

Standard Model highlights

- Theory input for light-by-light scattering for (g-2)_μ
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P,CP violation
- C,CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons
- Scalars
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

7.pdf						
	Channel	Expt. branching ratio	Discussion			
	$\eta \to 2\gamma$	39.41(20)%	chiral anomaly, η – η' mixing			
	$\eta \to 3\pi^0$	32.68(23)%	$m_u - m_d$			
	$\eta \to \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic B boson, light Higgs scalars			
	$\eta o \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)			
	$\eta \to 4\gamma$	$< 2.8 \times 10^{-4}$	$< 10^{-11}[52]$			
	$\eta \to \pi^+\pi^-\pi^0$	22.92(28)%	$m_u - m_d$, C/CP violation, light Higgs scalars			
	$\eta o \pi^+\pi^-\gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation			
	$\eta \to \pi^+\pi^-\gamma\gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs			
	$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g-2)_{\mu}$, dark photon, protophobic <i>X</i> boson			
	$\eta \to \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g-2)_{\mu}$, dark photon			
	$\eta \rightarrow e^+e^-$	$< 7 \times 10^{-7}$	theory input for $(g-2)_{\mu}$, BSM weak decays			
I	$\eta \to \mu^+ \mu^-$ 5.8(8) × 10 ⁻⁶		theory input for $(g-2)_{\mu}$, BSM weak decays, P/CP violation			
	$\eta \to \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs			
	$\eta \to \pi^+ \pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_{\mu}$, P/CP violation, ALPs			
ı	$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_{\mu}$, P/CP violation, ALPs			
	$\eta \to e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$			
	$\eta \to e^+ e^- \mu^+ \mu^-$	$< 1.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$			
	$\eta \to \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$			
	$\eta \to \pi^+\pi^-\pi^0\gamma$	$< 5 \times 10^{-4}$	direct emission only			
	$\eta \to \pi^{\pm} e^{\mp} \nu_e$	$< 1.7 \times 10^{-4}$	second-class current			
	$\eta o \pi^+\pi^-$	$< 4.4 \times 10^{-6} [53]$	<i>P/CP</i> violation			
	$\eta \to 2\pi^0$	$< 3.5 \times 10^{-4}$	P/CP violation Gan, Kubis, Passemar, ST			
	$\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$	<i>P/CP</i> violation [arxiv:2007.00664]			

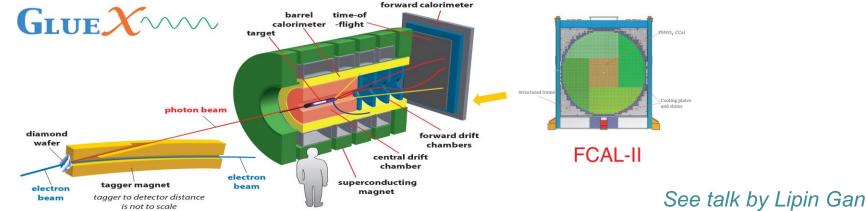
Summary of RF2 LOIs

20 LOIs for which RF2 is primary 4 LOIs for which RF2 is secondary Split evenly between $\eta(`)$ factories, K physics, light quark physics

Conclusions

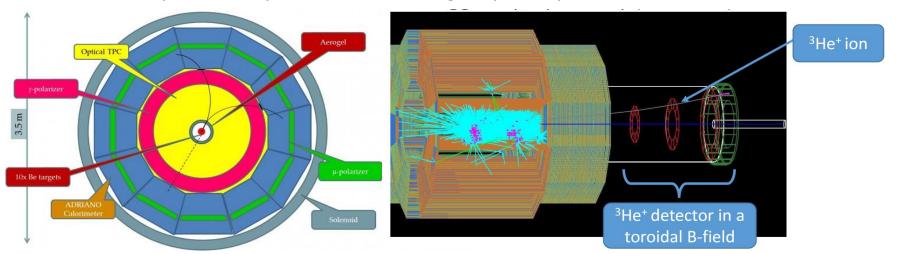
A vibrant experimental program was presented, with deep connections with beyond SM phenomenology and a synergistic interaction with the lattice QCD community. For more details:

https://indico.fnal.gov/event/45713/timetable/#20201002


Additional information in back-up

THE END

Jefferson Eta Factory (JEF) experiment γ beam (10 GeV) on H target


GlueX + upgraded forward calorimeter at Jefferson Lab (Hall D)

RF/SNOWMASS21-RF2_RF0_Liping_Gan-017.pdf

Rare Eta Decays with a TPC for Optical Photons (REDTOP)

Proton beam (1-3 GeV) on nuclear target (Be/D) RF/SNOWMASS21-RF2_RF6-IF6_IF3_REDTOP_ Collaboration_-_new-083.pdf

Next Generation experiments:

See talks by Matthew Moulson and Elizabeth Worcester

- Fermilab based experiment?
 - Well-developed proposals exist
 - Could be enabled by planned upgrades to Fermilab accelerator complex Potential Snowmass message from Rare & Precision Frontier: design FNAL upgrades to facilitate a broad physics program
- Examples of opportunities for discussion and high-level cooperation:
 - Detector ideas and R&D: Calorimeters with photon vectoring; in-beam vetoes; signal processing and readout
 - Simulation: Benchmarking for MC and event generators; techniques for generation of large samples
- Message from US Kaon LOI: Both out of intellectual interest and a desire to maintain breadth in the US physics program, the US kaon physics community would like to explore possibilities for expanded US participation in the current and next-generation rare kaon decay experiments at JPARC and CERN. We would also like to hold open the possibility for more major contributions to these experiments or for a complementary US-based experiment if the science points in that direction.

 RF/SNOWMASS21-RF2 RF0 Worcester-092.pdf

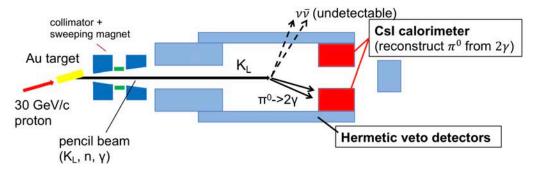
Next Generation experiments:

See talks by Matthew Moulson and Elizabeth Worcester

- Fermilab based experiment?
 - Well-developed proposals exist
 - Could be enabled by planned upgrades to Fermilab accelerator complex Potential Snowmass message from Rare & Precision Frontier: design FNAL upgrades to facilitate a broad physics program
- Examples of opportunities for discussion and high-level cooperation:
 - Detector ideas and R&D: Calorimeters with photon vectoring; in-beam vetoes; signal processing and readout
 - Simulation: Benchmarking for MC and event generators; techniques for generation of large samples
- Message from US Kaon LOI: Both out of intellectual interest and a desire to maintain breadth in the US physics program, the US kaon physics community would like to explore possibilities for expanded US participation in the current and next-generation rare kaon decay experiments at JPARC and CERN. We would also like to hold open the possibility for more major contributions to these experiments or for a complementary US-based experiment if the science points in that direction.

 RF/SNOWMASS21-RF2 RF0 Worcester-092.pdf

KOTO experiment:

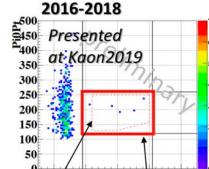

See talk by Elizabeth Worcester

Limit based on 2015 data:

$$BR(K_L \to \pi^0 v \overline{v}) < 3.0 \times 10^{-9} (90\% \text{ C.L.})$$

No events observed in signal region

 $K_L \to \pi^0 \nu \bar{\nu} : (\pi^0 \to) 2\gamma + \text{nothing}$



Blind analysis of 2016-2018 data:

4 events in the signal region (expected << 1)

- *1 event from mistake in cut application
- *Additional background from charged kaon decay identified
- *Upstream detector needed to veto K+: Prototype installed for 2020 run and Design in progress for higher efficiency UCV

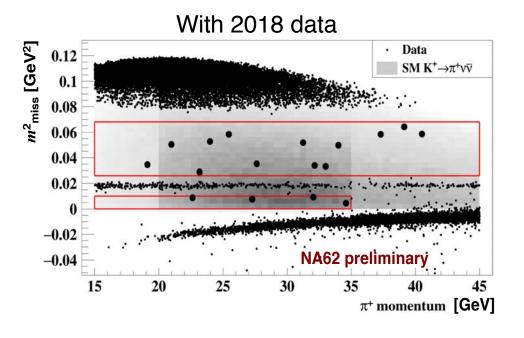
2000 3000 4000 5000 6000

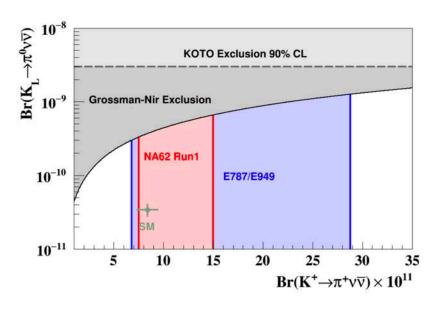
Signal

region

Pi0RecZ

blind region


Data taken during



KOTO Step-1 expects to reach SM single event sensitivity by 2025

Plots from Shinohara, KAON 2019 and Shimizu, ICHEP 2020

Preliminary NA62 results, ICHEP2020

NA62 experiment:

See talk by Matthew Moulson

- Run 1 (2016-2018) : $BR(K^+ \to \pi^+ \nu \nu) = (11.0^{+4.0}_{-3.5 \text{ stat}} \pm 0.3_{\text{syst}}) \times 10^{-11}$ Expected signal (SM): 10 events, Expected background: 7 events Total observed: 20 events, 3.5 σ significance
- Plans for NA62 Run 2 (from LS2 to LS3): Data taking resume in July 2021 with
 - Key modifications to reduce background
 - Higher beam intensity: 70% → 100%
 - Expect to measure BR($K^+ \rightarrow \pi^+ \nu \nu$) to better than 20%